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Abstract

We propose a learning algorithm that discovers a motif represented by patterns and

an alphabet indexing from biosequences. From only positive examples with the help of

an alphabet indexing, the algorithm �nds k regular patterns as a k-minimal multiple

generalization (k-mmg for short). The computational results for transmembrane domains

indicate that the combination of k-mmg and alphabet indexing works quite successful.

We also introduce a partial alphabet indexing that transforms symbols dependently on

the position in sequences.

1 Introduction

Extracting a consensus motif from proteins that have common features is one of the best ways

to understand proteins. To �nd likeness of arrangements of amino acid residues on computers,

the multiple alignment technique is frequently applied to amino acid sequences [10]. This

technique is quite useful when a few sequences have to be regarded. However, the time and the

space needed to compute multiple alignments rapidly blow up with the growth of the number

of sequences. Therefore, to deal with a large amount of sequences, it is reasonable to consider

\�nding the motif from sequences" as \learning a rule from examples" by assuming the motif

can be found in a speci�c class of rules that has e�cient learning algorithms.



Along with the development of databases of sequences on computers in Molecular Biology,

the problems of learning motifs from sequences have attracted a lot of interest from Computer

Science. Especially, the importance of algorithms that would �nd rules which can be easily

understood by human is increasing. In this research direction, learning algorithms that use

negative examples as well as positive examples for specifying rules have been studied, and are

known to be very e�ective to �nd accurate rules (e.g.[2]). They also serve new viewpoints such

as the discovery of a negative motif from negative examples rather than the rules explaining

positive examples. However, it is more often required to �nd a motif directly from positive

examples. Furthermore, negative examples may not be available in some features since ex-

periments for obtaining positive examples are rarely intended to identify or specify negative

examples; In other words, it is usually not true that non-examples are negative examples.

Algorithms for learning from only positive examples are developed to cope with these situa-

tions. In the criteria of learning from positive examples, the main di�culty is in the requirement

that the ideal rule must explain all the positive examples and at the same time should reject

most of unknown negative examples. This requirement appears as a kind of \tightness" of

rules, which eliminates the suspicion that the rule explains negative examples as well as posi-

tive examples.

As applications in bioinformatical knowledge acquisitions, Arimura et al. [3] dealt with the

problem of learning from only positive examples by k-minimal multiple generalization (k-mmg,

for short), which expresses a motif in a disjunction of regular patterns and is guaranteed to

explain a minimal set of strings. Br�azma et al. [5] adopted the minimum description length

principle as the tightness of rules, and developed the algorithm that �nds a PROSITE pattern

from positive examples. They proved that their algorithm �nds a pattern whose description

length is reasonably small and thus is considered having less redundancy.

In this paper, we propose a method to �nd rules and exceptions from sequences as regular

patterns and an alphabet indexing of amino acid residues. This combines the learning algorithm

that �nds a k-mmg, and the local search algorithm to �nd an alphabet indexing, which is

basically analogous to that developed in [13]. The algorithm for k-mmg adopts the several

heuristics, one of which makes the algorithm to �nd not only a rule explaining examples but

also exceptions improving the rule. Furthermore, we introduce a partial alphabet indexing

whose translation depends on the position of symbols. We apply this new technique to the

problem of identifying signal regions of signal peptides.

2 Minimal Multiple Generalization

In this section, we introduce pattern languages [14] and minimal multiple generalizations [3].

For a set A, we denote by ]A the number of elements in A. Let � = fA; B; : : :g be a �nite

set of constant symbols. Then, �� denotes the set of all the �nite strings over � including the

empty string ", and �+ denotes the set of all the nonempty strings.

A pattern is a string in (� [ f�g)�, where � is the gap symbol. A substitution � for a

pattern p is a set of replacements for gap symbols in p with patterns. The language L(p) of a

pattern p is the subset of �� obtained by replacing gap symbols in p with strings in ��. Note

that patterns and their languages in this paper refer to regular patterns and extended regular

pattern languages in literature (e.g.[14]). For a �nite set P of patterns, L(P ) denotes the union



S
p2P L(p) of languages.

A pattern p is canonical if p contains no consecutive occurrences of gap symbols. Without

loss of generality, we assume that every pattern is canonical. For di�erent patterns p and q, we

say that p is more speci�c than q if there exists a substitution � such that p = �(q). Also, for

sets P and Q of patterns, we say that P is more speci�c than Q, if and only if for any p 2 P

there is q 2 Q such that p is more speci�c than q. A set P of patterns is reduced if no pattern

p 2 P is more speci�c than other pattern q 2 P . Let Dk be the class of reduced sets of at

most k patterns. Then a set P 2 D
k is a k-minimal multiple generalization (k-mmg for short)

of S � �� if S � L(P ) and no Q 2 D
k with S � L(Q) is strictly more speci�c than P .

Let p be a pattern. A substitution � is basic if � is either (i) � = f� := �a�g, where a 2 �,

or (ii) � = f� := "g. We de�ne the set of re�nements of p by f�(p) j � is basicg and denote

�(p). Note that, for any p0 2 �(p), p0 is more speci�c than p. A pattern p is re�ned with respect

to S � �� if there is no re�nement r 2 �(p) such that S � L(r). Let p be a pattern satisfying

S � L(p), and let k > 1 be a positive integer. A k-division of p with respect to S is a set

P � �(p) of at most k patterns such that P is reduced and S � L(P ). Also, we say that p

is k-divisible with respect to S if there exists a k-division of p with respect to S. Note that

k-divisibility implies k
0

-divisibility for k � k
0

, but not for k � k
0

in general.

Now we describe the algorithm MMG(k; S) (Fig. 1) that �nds a k-mmg for given k > 1

and S � ��. Given a set S of positive examples, the algorithm searches for a k-mmg in D
k: It

starts from the most general generalization f�g, then iterates re�ning and dividing a pattern

in the current mmg, while the number of patterns does not exceed k. In the algorithm, the

operator � is repeatedly applied to a pattern to produce a set of more speci�c patterns.

For example, let S be the set consisting of the following sequences:

e1 = IATGMVGALLLLLVVALGIGLFI e5 = LVIGTIAVLIGIVNLGL

e2 = FIIATVEGVLLFLILVVVVGILI e6 = LYLGVVLSAVVIITGCF

e3 = QSYMIVLMVTCCITPLSIIVLCYL e7 = YHLTSVWMIFVVTASVFTNGLVLA

e4 = IAILLLTVVTLATSVASLVYSMGASTPS

Then the algorithm MMG(k; S) for k = 3 �nds, for example, the followng 3-mmg:

P =

8><
>:

p1 = �I � T � V � L � V � L�

p2 = LYLGVVLSAVVIITGCF

nnnp3 = QSYMIVLMVTCCITPLSIIVLCYL

9>=
>;

Here the languages L(p1), L(p2), and L(p3) cover subsets fe1; e2; e4; e5; e7g, fe6g, and fe3g of

S, respectively. Two patterns p2 and p3 in P contain no gap symbols. Such a pattern explains

only oneself, and is called exception.

Although the algorithm MMG(k; S) is guaranteed to �nd a k-mmg for any input [4], there

is unspeci�ed choice in the following points:

(�1) A k-divisible pattern p in P .

(�2) A k-division �P from �(p).

(�3) A pattern p in the current multiple generalization which should be re�ned.

(�4) A re�nement r of p from possible re�nements in �(p).

In order to �nd an appropriate k-mmg for representing a motif of sequences, we try the

following three heuristic strategies introduced in [3] and [15]:



� Randomized (Rand): Choose patterns at random.

� Maximal covering (Max): Choose a pattern covering the maximum number of positive

examples to obtain a k-mmg with less exceptions.

� Minimal covering (Min): Choose a pattern covering the minimum number of positive

examples to obtain a k-mmg containing many exceptions.

In Max and Min strategies, the choices of patterns in (�1), (�3) and (�4) are clear. However,

in (�2), the algorithm must choose an appropriate subset of �(p) for p. Let R be the set of

subsets of �(p) that are reduced with respect to a set S0
� L(p) and consist of at most k patterns.

In our implementation, we choose the smallest set from R. If there are two or more smallest

subsets, then we �rst compute the sequences of positive integers for subsets in R as follows.

Let P 0 = fp1; : : : ; pmg be a set in R, and let n(pi) be the number of examples in S
0 covered

by pi 2 P
0. In Max strategy, the sequence seq(P 0) is de�ned as hn(pi(1)); n(pi(2)); : : : ; n(pi(m))i,

where i(1); : : : ; i(m) are the indices of patterns in P
0 sorted as giving the decreasing sequence

of integers n(pi(1)) � n(pi(2)) � � � � � n(pi(m)). In Min strategy, the sequence is similary

de�ned by the indices giving an increasing order. Then, we choose a set of patterns that

gives the lexicographically largest sequence in Max strategy, and choose a set that gives the

lexicographically smallest sequence in Min strategy. For example, if there are two smallest sets

P1 = fp1; p2g and P2 = fp1; p3g in R with n(p1) = 4, n(p2) = 5 and n(p3) = 1, then in Min

strategy, we choose P2 since seq(P2) = h1; 5i is smaller than seq(P1) = h4; 5i.

MMG(k; S)

P := Re�nement(f�g, S);

�k := k;

while �k � 2 do:

if P contains �k-divisible patterns then

Choose such a pattern(�1) p 2 P , and let

�P := Divide(p, k, S � L(P � fpg));

else \there is no further �k-divisions"

quit while;

�P := Re�nement(�P , S � L(P � fpg));

P := (P � fpg) [�P ;

�k:=�k � ]�P + 1;

end while;

Output P .

Divide(p; k; S 0)

Choose a set(�2) P 0 � �(p) such that

]P 0 � k, S0 � L(P 0) and P 0 is reduced;

Return P 0;

Re�nement(P 0; S0)

while some patterns in P 0 can be re�ned

with S0 do:

Choose such a pattern(�3) p 2 P 0;

Select a re�nement(�4) r 2 �(p) such that

S 0 � L(P 0 � frg) ;

P 0 := (P 0 � fpg) [frg;

end while;

Return P 0;

Figure 1: Algorithm for �nding k-mmg.

3 Local Search for Alphabet Indexing

This section gives a notions of alphabet indexing which will be combined with k-mmg together,

and describes a local search algorithm to �nd an approximate alphabet indexing.

Let I be a �nite alphabet, and let f be a mapping form � to I. By ~f we denote the

homomorphism ~f(s) = f(s1) � � � f (sn) for s 2 �� and ~f(S) = f ~f(s)js 2 Sg for S � ��.



Given disjoint sets P and N of strings over � and an alphabet I with ]I < ]�, an alphabet

indexing f of � by I with respect to P and N is a mapping f : � ! I that maximizes

the product ]P [ ~f ] � ]N [ ~f ] of the sizes of the subsets P [ ~f ] = fp 2 P j ~f (p) 62 ~f(N)g and

N[ ~f] = fq 2 N j ~f(q) 62 ~f(P )g.

The de�nition of an alphabet indexing intends to retain most of positive examples and

negative examples to be consistent after the translation by the indexing. However, it is known

in [12] that the problem of �nding an indexing that perfectly separates the transformed sets
~f(P ) and ~f(N) is NP-complete. Furthermore, this maximization problem has turned out to be

hard to approximate in polynomial-time [11]. Even though, in some actual applications, it is

known that heuristic algorithms such as a local search algorithm in [13] can �nd an appropriate

alphabet indexing in a reasonable amount of time. In this paper, as in the system presented in

[13], we employ a local search algorithm for �nding a near-optimal indexing together with an

accurate k-mmg.

A local search algorithm Find Indexing takes small sets pos and neg of positive and

negative examples. A neighbor of an indexing f for � is any indexing f
0 for � in which for

only one symbol a 2 � the index f 0(a) di�ers from f(a). The goodness measure of an indexing

f with the k-mmg P , obtained as the output of MMG(k; ~f(pos)), is ]fq 2 negj ~f (q) 62 L(P )g.

We consider I j�j as the set of all indexing of � by I, by regarding a string f(a1) � � � f(an) for

� = fa1; � � � ; ang as an indexing f : � ! I. The algorithm Find Indexing begins with an

initial indexing f 2 I
j�j. Then, the algorithm iterates the following operations, while a value of

Score(f ) can be improved. For the current indexing f , the algorithm computes the measure of

every neighbor indexing f
0. If there is a neighbor indexing f 0 such that Score(f 0) > Score(f),

then replace f with f
0.

Find Indexing(pos, neg)

Select an indexing f randomly from I j�j;

repeat

Find a neighboring indexing f 0 whose measure is strictly better than that of f ;

if there is no better neighbor indexing, then return f ;

Let f := f 0;

forever;
Figure 2: Algorithm Find Indexing

4 Computational Results

We collected the examples as in Table 1, for the following two identi�cation problems.

� Transmembrane domains: From PIR database [9], we collected subsequences of proteins

that are speci�ed as transmembrane domains as positive examples: as negative examples,

we randomly took subsequences of length 30 that have no overlaps with transmembrane

domains.

� Signal peptides: From GenBank database [6], we collected the signal peptides according

to the indications as positive examples, and the initial segments of proteins of length 30

that have no signal peptides as negative examples.
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Figure 3: Signal peptides: The result of test runs.

In each run of the algorithm, sets pos and neg are chosen randomly from POS and NEG,

respectively. All positive examples in POS except examples in pos, and all negative examples

in NEG are used in the �nal evaluation of found hypotheses. The size of POS, from which a

k-mmg is computed, and the number k of patterns are important unspeci�ed parameters. In

the experiments, we supposed that the rules for these two problems can be represented by a

few patterns, of length at most 6, with the help of alphabet indexing. We tried various sizes

for pos for the identi�cation of transmembrane domains, from 10 to 80. We chose ]pos= 40

for signal peptide, since we obtained the best result with that value in test runs.

Table 1: The number of provided examples

Data Sequences POS NEG pos neg

Transmembrane domains 689 1000 10～ 80 10～ 80

Signal Peptides Bacterial 495 7330 40 7000

Plant 370 3074 40 3000

Primate 1032 3612 40 3000

Rodent 1018 3158 40 3000

4.1 Transmembrane Domains

In Fig. 4, the best outputs for the normal execution (1) and for �nding a negative motif (2)

are presented.

As we can see, the obtained alphabet indexing is approximating the hydropathy index. It

is known in [7] that transmembrane domains of proteins are well identi�ed by the hydropathy

index. It must be noted that the accuracy of the obtained motif is better than or competitive

to the result directly obtained by the hydropathy index in [15].

Table 2: Hydropathy index

A C D E F G H I K L M N P Q R S T V W Y

1.8 2.5 -3.5 -3.5 2.8 -0.4 -3.2 4.5 -3.9 3.8 1.9 -3.5 -1.6 -3.5 -4.5 -0.8 -0.7 4.2 -0.9 -1.3



(1) Use positive examples as POS

]pos = ]neg = 50, k = 5

Strategy: Max.

indexing symbols

0 ACFILMSVWY

1 DHKR

2 EGNPQT

patterns

*10000*1000*

*000000*000*

0*000*00000*0

0000*0*01000*

accuracy : 81:1%(89:9%; 77:9%)

(2) Use negative examples as POS

]pos = ]neg = 70, k = 5

Strategy : Min.

indexing symbols

0 AFGIMQSTVW

1 DEHKNPRY

2 CL

patterns

120112011111100102222011121102

011221121120222222220222222220

2*21*021*021*

1*21*021*21*

*21*221*21*

accuracy : 86:7%(89:9%; 83:7%)

Figure 4: Transmembrane Domains: Accuracy m% ( p%, n% ) is measured by all examples

POS and NEG, where m is the geometric mean p and n, for positive and negative examples,

respectively.

4.2 Signal Peptides

Assume that sequences showing a common feature are divided at some �xed place into the left

part and the right part that are governed by di�erent properties of amino acid residues. We

introduce the following method to improve accuracy for coping with this situation. Firstly,

sequences are divided at some �xed division spot, and then the left and the right part are

transformed by two independent indexings. For example, KLFIFTCLLAVALA will be divided into

KLFIF and TCLLAVALA if the division spot is 5. The learning algorithm is modi�ed to �nd a

k-mmg for amino acid sequences whose the left and the right parts are di�erently transformed.

We call this method partial alphabet indexing.

The experimental results obtained for signal peptides using partial alphabet indexing is

shown in Fig. 5 and 6. The division spot = 0 is the case that sequences are not divided. We

can observe that the accuracy of obtained motif is slightly better than that for division spot

= 0. However, it is not so good as those obtained in [1] and [4].

5 Discussion

In this paper, we presented a learning algorithm that combines a k-mmg and an alphabet

indexing as a hypothesis, and we con�rmed that this approach is e�ective for extracting motifs

from positive examples.

For transmembrane domains, our technique is powerful enough to �nd an appropriate al-

phabet indexing and an accurate k-mmg. The result is competitive even with the learning

algorithm in [13] that extracts patterns from both positive and negative examples.
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Figure 5: Signal peptides: Accuracies of the best outputs in a few trials vs places of the division

spot for four categories of signal peptides. Almost always Min strategy, plotted by squares with

dotted lines, achieved the best accuracy: Rand and Max strategy are shown by diamonds with

solid lines and crosses with dashed lines, respectively.

For signal peptides, we assumed that the left and the right parts of amino acid sequences

are governed by di�erent properties of amino acid residues. In the result, we observed that

the obtained motif achieves slightly higher accuracy than that of motif found for examples

transformed uniformly. Also, it is observed that obtained partial alphabet indexings for the left

parts are not similar to that of the right parts. However, the improvement of the accuracy of

obtained motif is less than we expected. O� course, there remains possibility that this technique

improves the accuracy of motif if it is combined with other method, such as decision trees over

patterns in [13].

The k-mmg �nds a motif from only positive examples. Even though, negative examples are

indispensable for measuring the goodness of alphabet indexing. If we are not allowed to use

negative examples, then we need another de�nition of the measure of alphabet indexings in our

algorithm. On the other hand, if we can use negative examples to �nd a k-mmg, we may have

some other strategies to deal with the choice in the algorithm, such as that in [3]. These issues

should be considered in future works.



(1) division spot = 0

Indexing Bacterial Plant Primate Rodent

0 ACFILMV ACFGILMRSTVY ACFGLMSVWY ACFGILMRSTVWY

1 GPSTWY DEHKNPQW DEHIKNPQRT DEHKNPQ

2 DEHKNR

Strategy Min Max Min Min

(2) division spot = 10～15
(a) Bacterial

division spot = 15.

Strategy: Min.
Left Right

DEHMQTWY CDEFHIKMNPSW

ACFILSV AGQ

GKNPR LRTVY

(b) Plant

division spot = 13.

Strategy: Min.
Left Right

ACFGHILMRSTV DEFHIKLMNPQTVW

DEKNPQWY ACGRSY

(c) Primate

division spot = 15.

Strategy: Min.
Left Right

ACFGHIKLPQVW CDEFHIKLMNPQRVWY

DEMNRSTY AGST

(d) Rodent

division spot = 13.

Strategy: Min.
Left Right

ACFGHILMNRSVW DEFHIKLMNPQRT

DEKPQTY ACGSVWY

Figure 6: Signal Peptides: The partial alphabet indexing achieved the highest accuracy in

the case of (1) division spot = 0, and (2) division spot = 10～15. The amino acid symbols

categorized in the same index are shown in the same row.
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