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Abstract

Given a set of N sequences, the Multiple Sequence Alignment problem is to align these N
sequences, possibly with gaps, that brings out the best commonality of the N sequences. MUSCA!
is a two-stage approach to the alignment problem by identifying two relatively simpler sub-problems
whose solutions are used to obtain the alignment of the sequences. We first discover motifs in the
N sequences and then extract an appropriate subset of compatible motifs to obtain a “good”
alignment. The motifs of interest to us are the irredundant motifs which are only polynomial in
the input size. In practice, however, the number is much smaller (sub-linear). Notice that this
step aids in a direct N-wise alignment, as opposed to composing the alignments from lower order
(say pairwise) alignments and the solution is also independent of the order of the input sequences;
hence the algorithm works very well while dealing with a large number of sequences. The second
part of the problem that deals with obtaining a good alignment is solved using a graph-theoretic
approach that computes an induced subgraph satisfying certain simple constraints. We reduce a
version of this problem to that of solving an instance of a set covering problem, thus offer the best
possible approximate solution to the problem (provided P#NP). Our experimental results, while
being preliminary, indicate that this approach is efficient, particularly on large numbers of long
sequences, and, gives good alignments when tested on biological data such as DNA and protein
sequences. We introduce the the notion of an alignment number K (2 < K < N), a user-controlled
parameter, that lends a useful flexibility to the aligning program: this additional requirement
constrains the alignment to have at least K sequences agree on a character, whenever possible, in
the alignment. The usefulness of the alignment number is corroborated by the users who view this
as a natural constraint while dealing with a large number of sequences.

1 Introduction

Given a set of N sequences, the Multiple Sequence Alignment problem is to align these N sequences,
possibly with gaps, that brings out the best commonality of the N sequences. Various alignment cost
functions [2, 3,4, 6, 8, 7, 14, 15, 12, 9], have been used in literature. The general approach to solving
the pairwise (N = 2) sequence alignment problem has been a dynamic programming technique using
different mechanisms of scores which is a function of the edit distance, along with gap penalties, to
evaluate the similarity of the sequences. In [16, 13] the case of N > 2 has been handled by first doing
a pairwise alignment for some or all possible pairs in some order and then building a IN-wise alignment
from these.

MUSCA? uses a two-stage approach to the alignment problem by identifying two relatively simpler
sub-problems which deal separately with the two issues, one of identifying the “local similarities” and

! Musca is a constellation in the polar region of the Southern Hemisphere near Apus and Carina. Also, MUSCA is an
anagram of the salient characters in Constrained Multiple Sequence Alignment.

2 Musca is a constellation in the polar region of the Southern Hemisphere near Apus and Carina. Also, MUSCA is an
anagram of the salient characters in Constrained Multiple Sequence Alignment.
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the other of aligning the similarities appropriately. We first discover motifs in the N sequences, and
then use these motifs to obtain a “good” alignment. Informally, a motif is a repeated pattern that
appears more than once in a sequence. In the alignment context a motif is a pattern that appears in
two or more input sequences A major point of criticism regarding using motifs is that they are usually
very large in number (exponential in input size); however, we show that the motifs that are relevant
to the alignment problem are the irredundant motifs, and the number of these motifs is polynomial
in the input size [10]. Moreover, in practice, this number is much smaller (sub-linear). Thus, using
motifs for the alignment helps in at least two ways: (1) it aids in a direct N-wise alignment, as
opposed to composing the alignments from lower order (say pairwise) alignments and (2) the solution
is independent of the order of the input sequences. We believe that, in practice, these have important
consequences.

The second sub-problem of the alignment problem is that of obtaining a good alignment. Notice
that any arbitrary set of motifs need not necessarily give rise to an alignment, under the premise that
the alignment that uses a motif does not introduce gaps in the motif. Having obtained all possible
motifs in the first stage, this stage involves pruning this set to obtain a (sub)set that gives an alignment.
We solve this problem by mapping the motifs of the first stage to a suitable directed graph. Next we
show that obtaining an alignment of the motifs is equivalent to solving a set-covering problem. Thus
we present a very systematic way of aligning sequences based on motifs.

It is well known that the multiple sequence alignment problem, in addition to being a hard-to-
solve problem, is also very hard to model to the satisfaction of evolutionary biologists, geneticists
and other users. Does our approach have any theoretical contributions to the multiple sequence
alignment problem in general? We introduce the the notion of an alignment number K (2 < K < N),
a user-controlled parameter, that lends a useful flexibility to the aligning program: this additional
requirement constrains the alignment to have at least K sequences agree on a character, whenever
possible, in the alignment. This is particularly of interest when a large number of sequences are being
aligned. The utility of the alignment number is corroborated by the users who view this as a natural
constraint while dealing with a large number of sequences.

Roadmap. We describe our two-stage approach of motif discovery in Section 2 and aligning se-
quences in Section 3. We discuss the issues involved in using motifs for alignment and present a
simple graph theoretic formulation in Section 3.1. We present heuristic algorithm for this problem by
mapping it to a set covering problem in Section 3.2.

2 Motif Discovery (Stage 1)

We begin by giving a rigorous definition of a motif.

Definition 1 (K-motif m, location list L,,) Given a string s on alphabet X and an integer K, 2 <
K <|s|, a string m on £ U"." is a K-motif with location list L., = (11,12, ...,1,), if all of the following
hold:

1. m[0],m[|m| — 1] € %,
[First and last characters of the motif are solid characters; if “dont care” (the character)
characters are allowed at the ends, the motifs can be made arbitrarily long in size without
conveying any extra information.]

[

2.p= K,

3. there does not exist a location 1, | # l;, 1 <1i < p such that m occurs at l on s (the location list
is of mazimal size), and,
[This ensures that any two distinct location lists must have distinct motifs associated with each.]
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4. for every “dont care” character at position j in m, there exist at least two distinct occurrences
liy and l;,, 1 <iy,iy < p, such that s[l;, + j| # s[li, + j].
[No “dont care” character can be replaced by a solid character, otherwise an arbitrary number
of “dont care” characters could be introduced without conveying any extra information.]

If m is a string of XU {‘."}, m is called a rigid motif. In the rest of the discussion a K-motif is referred
to as a motif.
We give the the definitions of maximality and irredundancy below.

Definition 2 (Mazimal Motif) Let p1, po, ..., pr be all the motifs in the sequence s. A motif p; is
mazimal if and only if there is no pj (j # i) such that p; is a substring of pj, or, if p; is a substring
of pj, then there exists at least one occurrence of p; in s that is not covered by p; in s.

Definition 3 (Redundant motif) A mazimal motif m, with location list L., is redundant if there exist
mazimal motifs mi, 1 <1 <p, such that Ly = Ly ULpy ... ULpy,.
A motif that is not redundant is called an irredundant motif.

The motifs of interest to the sequence alignment problem are the irredundant motifs (see lemma 4)
which are only quadratic in the input size and there exists a polynomial time algorithm to extract
them from the input [10].

Similar definitions extend to discovering common motifs from multiple sequences. Teiresias is
an efficient implementation of the motif discovery problem [11] and we use this in our experiments.
Notice that a strip is a restricted version of the motif, in the sense that it is a motif of size one. In
the following discussion we discuss motifs while bearing in mind that the results would hold also for
strips (the results that are not critically dependent on the motif size being greater than one).

3 Sequence Alignment

We skip the process of discovering motifs from input sequences. Similar definitions extend to discover-
ing common motifs from multiple sequences. TEIRESIAS is an efficient implementation of the motif
discovery problem [11] and we use this in our experiments.

We obtain the irredundant motifs and the position of the motif in each sequence it appears in.
The offset list, associated with each motif p;, is a list of two-tuples (s;,l;), where s; is a pointer to
the sequence and [; is the offset in the sequence. We assume that every offset list has exactly one
occurrence of each sequence. At the end of the motif discovery step we have motifs, pi,po,...,PN;
N is the number of the motifs (not necessarily distinct), each with an offset list consisting of at least
k > 2 (distinct) sequences and the position in the sequence where the motif appears.

Can all the motifs be used in an alignment? If the answer is yes, we form an alignment that respects
all the motifs. If the answer is no, we remove the “offending” motifs in a manner that optimizes a
cost function and gives an alignment. To investigate this further, we now explore the conditions under
which two motifs can be used simultaneously in an alignment.

Definition 4 (Motif Overlap) Two irredundant motifs p; and p; overlap if there exists a sequence s
containing both these motifs and the following holds. Let n; and n; be the sizes of the motifs p; and
pj and let l; and 1 be the locations (offsets) in a sequence s respectively, then the motifs overlap if the
intervals [l;,l; + n;] and [, 1; + n;] have a non-empty intersection.

Definition 5 (Pairwise Compatible Motifs) Two motifs, p1 and p2, are pairwise compatible if there
exists an alignment of the sequences that does not introduce gaps in the motifs p1 and ps.

Lemma 1 Two irredundant motifs p; and p; are pairwise compatible if and only if none of the fol-
lowing holds:
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1. If p; and p; do not overlap in all the sequences, then p; is to the left of p;, without loss of
generality (otherwise a domain crossing mismatch is said to have occurred).

2. If p; and p; overlap in any sequence, then p; is at some fized distance d to the left of p;, without
loss of generality (otherwise an overlap mismatch is said to have occurred).

We define the alignment using a set of motifs as follows.

Definition 6 (sequence alignment, compatible set) Given a set S of motifs, vi,,viy,...,v;,, a motif-
alignment of the sequences, s1,S2,...,Sm, is the alignment such that in all the sequences, with no gaps
in the motifs, the motifs v;,,vi,,...,vi,, are aligned (in all the sequences they appear). If such an
alignment exists, the set s1,89,...,8m, s called a compatible set.

Definition 7 (linear ordering of motifs) Given a set of compatible motifs, a consistent ordering of
the motifs such that, in every sequence, the set of motifs that are present in the sequence appear in
the left to right order and this ordering is called the linear ordering.

Is it sufficient to just check for pairwise incompatibility of motifs while seeking an alignment?

Definition 8 (domain crossing error) Given a set of motifs, my, ma, ..., m,, a domain crossing error
is said to occur if there exists a linear ordering of the motifs m;, ,mi,,...,my;, , yet there exists no
alignment that respects all the n motifs.

Lemma 2 A set of irredundant motifs p1,ps,...,pn s feasible if and only if none of the following
holds:

1. There exist distinct motifs p; and p; such that p; and p; are pairwise incompatible.
2. There exists a non-empty subset of the motifs without a linear ordering.

3. There exists a non-empty subset of the motifs that demonstrate domain crossing error.

3.1 The Graph-theoretic Formulation

Next we wish to capture these conditions in a graph as follows. Construct a directed graph G = (V, E)
where every motif p; corresponds to a vertex v;, thus N = |V|. The directed edges are introduced as
follows:

1. There is no edge between two vertices where the two corresponding motifs do not occur simul-
taneously in any sequence.

2. If p; is to the left of p; in every sequence that the two motifs are present, then a directed edge
is placed from v; to v;. This is to indicate that in the alignment the motif p; appears to the left
of pj. The edges are labeled as follows:

(a) Label forbidden, if the motifs corresponding to v; and vy are not pairwise compatible.
(b) Label overlap, if the motifs corresponding to v; and vy overlap.
(c) Label nonoverlap, if the motifs corresponding to v; and v are pairwise compatible but do

not overlap.

The linear ordering of motifs is captured by checking for cycles in the graph. However the domain
crossing mismatch requires a more careful handling as described below.
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Handling domain crossing mismatches. We associate a distance D,,,, with every edge that is
not labeled forbidden. This is used to compute the feasibility of a collection of motifs corresponding to
a solution; this does not contribute to the cost of the alignment. (We discuss the weight corresponding
to the cost in the next section.) Let p; and p; be the two motifs corresponding to the vertices. Then
if d is the minimum of the distance between the occurrences of the two motifs in every sequence that
both of them appear in, D, = d.

To detect the domain crossing mismatches of motifs (that are pairwise compatible), we define the
notion of a consistent graph w.r.t. a vertexz.

Definition 9 Let G = (V, E) be a labeled, weighted, directed, graph with weights on the edge uv given
by D(u,v) and a label € {forbidden,overlap, nonoverlap}. A path, P, is valid if it has no edges
labeled forbidden. Further, a valid path, P, is called an overlap-path if all the edges in the path are
labeled overlap. The weight of the valid path P, Dp, is the sum of the weights of its constituent edges.

Let p € V.. The graph is consistent w.r.t p if ¥V q € V', for all pairs of vertex-disjoint valid paths
from p to q, P* and P?,

1. Dp1 = Dps, if P! and P? are both overlap-paths, or,
2. Dp1 > Dp2, if P! is an overlap-path and P? is not.

We now present the straightforward observation that relates the set of compatible motifs to a
feasible subgraph.

Lemma 3 The following two statements are equivalent:

o Given a subset of motifs p1,pa,...,pn from the set of all motifs from m sequences of input, the
subset is compatible, if the following holds:

1. the motifs are not pairwise incompatible,
2. there exists a linear ordering of p1,p2, ..., Pn, and,

3. there is no domain crossing mismatch in p1,p2,...,D0n.

o Given a subset of vertices vi,vs,...,v,, constructed as defined in this section. The induced
subgraph on vi,va,...,v, s feasible, if the following holds:

1. there is no edge labeled forbidden in the induced subgraph,

2. the induced subgraph is acyclic, and,

3. the induced subgraph is consistent w.r.t. every vertex v;, 1 < i < n.

Lemma 4 If p is a redundant motif, then using the motif p does not improve the cost of the optimiza-
tion problem.

Proof Sketch. Let p be rendered redundant by motifs p1,po,...,pn, n > 1. By definition, motif p
has less number of solid-characters than each of p;, 1 < i < n. Thus if an alignment can use motif
p, it can certainly use all the motifs p1,po, ..., pn, giving a larger number of solid-characters; thus a
higher cost for the optimization problem. O

3.2 Algorithm to compute the “best” alignment

Given a set of incompatible motifs, the set can be grouped into sets (not necessarily disjoint) such
that each set violates exactly one of the three conditions of Lemma (2). These sets are called basic
incompatible sets. Next, it can be easily shown that we can remove exactly one motif from a basic
incompatible set to make it compatible.

The algorithm proceeds in the following three steps.
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1. Detect the basic infeasible (sub)sets.
2. Eliminate motifs to obtain a feasible set that maximizes the cost.
3. Render the alignment.

Step 1. In this step we form subset of vertices that lead to incompatibility of the motifs. Using
lemma (3), we compute the following sets:

1. Construct the sets Fy, Fy, ..., F},, where each set consists of two vertices which are the end
points of an edge labeled Forbidden. This is done by simply scanning all the edges and collecting
the end points of the edges labeled Forbidden.

2. Construct the sets Cy, Co, ..., C,. where each set consists of vertices that form a directed cycle
in the graph. All the cycles are captured by carrying out a depth first search (DFS) of the graph.

3. Construct the sets P, P, ..., P,, where each set consists of vertices that form a closed path
in the graph. These are captured by carrying out a breadth first search (BFS) rooted at each
vertex.

It is easy to see that the basic incompatible sets are F', F5 . .. ,an, C,Cy...,Cp, PPy Py
Step 2. Set-covering problem. An instance (X,)) of the set-covering problem consists of a finite set
X and a family Y of subsets of X, such that every element of X belongs to at least one subset in ):
X =UgeypS. We say that a subset S € YV covers its elements. The problem is to find a minimum-size
subset A C ) whose members cover all of X: X = UgeaS. Any A satisfying this condition covers X.
See [5] for details on this problem.
We construct an instance of a set cover problem (the dual of our problem) as follows. Let

{vl,v2,...,vn}:F1UF2...UanUC’1UCg...UCnCU]:’lUPg...UPnp
The elements of the the set (X of the set cover problem) are

F13F2"'7an701302"'7Cnc7P17P2"'an

.
The subset S; corresponds to each v;, 1 <i <n (where Y = {S1,52...,5,}), and is defined as
Si:{FHUi e 1 Slénf}U{Cﬂ’Ui eC,1 SZSnC}U{fﬂ’U@ ep,1 §l§np}

Thus 5; denotes all the basic incompatible set that has a common element v;, and removing the motif
corresponding to v; suffices to make all the corresponding basic sets compatible. Now, it is easy to
see that a solution to the set-covering problem gives the minimum number of motifs that need to be
removed so that the remaining set of motifs is compatible.

Associating weights to S; which reflect the weight of each motif (depending on the cost function),
gives a weighted set cover problem. The set-covering problem is known to be MAX SNP hard and the
greedy algorithm is the best known approximation algorithm for the problem, assuming P # NP [1].
To reflect the underlying cost function a weight is associated with every motif in the following manner.
Let ¢ be the number of solid characters in the corresponding motif, p;, and let the number of sequences
containing p; be [, then for the k-MSA problem the associated weight is ¢l and for k-MSA .« it is c.
We ignore the change in cost due to the common cost of a set of motifs 3 .

Step 3. This step consists of the following substeps:

3 For a more accurate computation of the cost an appropriate common cost due to a set of overlapping motifs must
be used.
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3.1 We compute a linear ordering (see Definition 7) using the graph G’ of Step 2, of the motifs pé-l,

p§-2, ey pzl for each sequence 7. Such a linear ordering of the motifs exists, since the set of motifs
is feasible.

3.2 From the original sequence s;, we obtain the fillers (if any) between two consecutive motifs as
f&, ;1, ;2, e f;l f& is the leftmost portion, possibly empty. For example, let sequence
s; = abcdefghijkl and let two motifs be as follows: pj] = cde and py = ghi. Then fj = ab,
fi=1, f3 = jkl.

3.3 We obtain an alignment of the sequences by appropriately aligning each (p§l+ ;l) and fi, | =
1,2,...,7;, filling the gaps with ‘->. The symbol ‘4’ denotes a string concatenation operation.
The alignment is such that each motif of a sequence is perfectly aligned with the corresponding
motif in all the other sequences.

For example let s; = abedefghijkl and sy = cdexyzpqrghitu. Then pi = p? = cde and p} =
p3 = ghi and fi = ab, f{ = f, f3 = jkl, f3 =empty, f} = xyzpqr, f3 = tu. Then the alignment
of the sequences are as follows (the motifs are shown in bold):

d e f - - — — — g h i j kI
(2) cdex y z p q r g h it u

4 Summary

We have proposed a two-stage approach to the alignment problem by handling two relatively simpler
sub-problems which deal separately with the two issues, one of identifying the “local similarities” and
the other of aligning the similarities appropriately. In the first stage we identify all possible K-wise
motifs, i.e., all motifs that appear simultaneously in at least K of the N input sequences (2 < K < N).
In the second stage, we give plausible alignments of a carefully chosen subset of these motifs (that
optimize certain cost functions). Using this approach for the alignment helps in at least two ways:
(1) it aids in a direct N-wise alignment, as opposed to composing the alignments from lower order
(say pairwise) alignments and (2) the resulting alignment is independent of the order of the input
sequences. K is an input parameter and is called the alignment number. In practice, our approach
works particularly well for alignment of a large set of (long) sequences. We have presented the result
of running our alignment algorithm on biological data and the results look very promising. In the full
version of the paper we discuss the computational complexity of the underlying optimization problem
along with an analysis of the approximation factor of any alignment that results from the algorithm.
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