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Abstract
We study the problem of finding a genetic network from data obtained by multiple gene disruptions

and overexpressions. We define a genetic network as a weighted graph, and analyze the computational
complexity of the problem. We show that if there exists a weighted network which is consistent with
given data, we can find it in polynomial time. Moreover, we also consider the optimization problem,
where we try to find an optimally consistent weighted network with given data. We show that the
problem is NP-hard. On the other hand, we give a polynomial-time approximation algorithm to solve
it with approximation ratio 2. We report some simulation results on experiments.

1 Introduction

One of the hottest research topic in Genome Science is to analyze the interactions between genes by
systematic gene disruptions and gene overexpressions. Our research group has installed a systematic
experimental method which allows both multiple gene disruptions and gene over expressions. By using
this method, we have launched a project whose purpose is to reveal the gene regulatory networks between
the 6,200 genes of Saccharomyces cerevisiae while many laboratories have also started similar project.
Among many computational problems related to the project, in this paper, we focus on the problem of
finding a genetic network from limited experimental data.

Akutsu et al. [1] defined a genetic network as a boolean network, where each node is either in an
active state or an inactive state. In their model, each edge represents an interaction of two genes, either
activation or inactivation. In this paper, we introduce a weighted network model as an edge-weighted
graph, where each weight reflects the strength of the interaction. We formulate the problem as a decision
problem, and analyze its computational complexity. We show that if there exists a weighted network
which is consistent with given data, we can find it in polynomial time. However, the assumption is
impractical, since experimental data may contain errors. Moreover, if a network has cycles, observed
data themselves may not be consistent with each other. Thus we have to consider the optimization
problem, where we try to find an optimally consistent weighted network with given data. We show that
the problem is NP-hard, so that we have little hope to solve it efficiently. On the other hand, we also
show a polynomial-time approximation algorithm to solve it with approximation ratio 2. We also propose
an algorithm to adjust weights incrementally, inspired by the weighted majority strategy [5, 8].

From a practical point of view, we are interested in the behavior of these two algorithms to predict
unknown state, after learning some limited given data. As training data, we use a normal state and all
states observed by flipping the activity of each gene one by one. This is because our actual experiments
for Saccharomyces cerevisiae will start from such trials. In order to estimate the prediction ability, we
use a set of states observed by flipping activities of two genes at a time. We report these simulation
results, and compare these two algorithms.
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Figure 1: Gene regulatory rule, where T'(v5) = 0.

2 Weighted Network Model

We define a genetic network by partially following [1]. We denote by R the set of all real numbers. A
genetic network G = (V, E,W,T) is a weighted directed graph with the set V' of nodes, the set E C V xV
of directed edges, the weight mapping W : E — R, and the threshold mapping 7' : V — R. We assume
that the graph has no self-loop, i.e, (v,v) € E for any v € V, although the graph may contain cycles.
We call a node of G a gene. For each edge e = (v;,v;) € E, the value W (e) represents the strength of
activation from v; to vj. Note that the value W (e) may be negative, which means v; inactivates v;. The
value T'(v) expresses the threshold associated with a gene v, explained later.

Each gene is assumed to be either in an active state or an inactive state. For convenience, we denote
a(v) =1 if a gene v is active and a(v) = —1 if inactive.

A gene regulation rule assigned to a gene v is expressed by the balance between the weighted sum
Y wyepav) - W((v',v)) and the threshold value T'(v). If the sum is greater than the threshold, the
gene v should be active, and if the sum is less than the threshold, v should be inactive. We do not care
if the sum is equal to the threshold.

For example, the gene vs in Fig. 1 should be active if v; is active and vs and v4 are inactive, since the
weighted sum 1-3+4 (—1)-4+(—1)-(—2) = 1 is greater than the threshold value T'(v5) = 0. On the other
hand, vs should be inactive if v; is active and vs and vy is inactive, since 1-3+(—1)-4+1-(=2) = =5 < 0.
The state of v5 is independent of the state of vy, since there is no edge from vy to vs.

For a gene v, gene disruption of v enforces v inactive and gene overexpression of v enforces v active.
Let x1,...,x, and y,...,y, be mutually distinct genes of G. An experiment with gene overexpressions
of z1,...,z, and gene disruptions of yi,...,y, is denoted by (x1,...,2p, W1,..., Yg)-

A global state of G is a mapping ¢ : V. — {—1,1}. Each global state must satisfy ¢(z;) = 1
and ¢(y;) = —1 under an experiment (xi,...,Zp, Wi, ..., Yq), although the global state need not be
consistent with the gene regulation rules. We say that a global state ¢ of G is stable under an experiment
(®1,...,2p, 7 W1,...,7yg) if it is consistent with all gene regulation rules except those assigned to the
genes in {x1,...,2p,Y1,...,Yq}. That is, for each node v & {z1,...,2p,y1,...,Yq}s

Y(0) = { L S graen v0) - W((.0) > T(0).
-1 if Z(v’,v)GE ¢(U,) : W((UI,’U)) < T(U)

Otherwise, it is called unstable. We say that a genetic network G is stable under an experiment « if there
is a global state of G which is stable under a. When no experiment is made on G, we simply remove
“under ” from the terminology.

We note that the stable global state is not necessarily unique. For example, for a simple network G
in Fig. 2, both of the global states (vi,v2) = (1,1),(—1,—1) are stable. On the other hand, for some
networks, there may be no global state which is stable. The network G in Fig. 2 is a simple instance
of such ones. Moreover, a stable network may become unstable under some experiments. We introduce
a cost of global state s with respect to a network GG, as the number of gene regulation rules in G which
is not satisfied by s. Thus, the cost of a stable global state is 0. A minimum cost global state under
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Figure 2: two simple genetic networks, where all threshold values are 0.

an experiment « is an arbitrary global state whose cost is minimum among all possible global states.
Therefore, all stable global states are minimum cost global states. For the network G in Fig. 2, all of
the global states (vi,vs,v3) = (-1,-1,1), (-1,1,-1), (1,-1,-1), (1,1,-1), (1,—-1,1), (—1,—1,1) are
minimum cost global states, since all of their costs are one, and no stable global state exists for G2. We
assume that all observed global states produced by experiments are minimum cost states.

Remark 2.1. Theoretically, the class of functions which we introduced is the class of linear separable
functions. Since it contains both AND functions and OR functions stated in [1] as a subclass, we think
that the class is rich enough. Moreover, we may express each inactive state v by a(v) = 0 instead of
a(v) = —1, since these two models are equivalent.

This paper investigates the possibility to construct a genetic network from a given set of observed
global states, which are produced by experiments. We are interested in the complexity of the problem,
and its practical behavior.

3 Matrix representation of Genetic Network

In order to treat the problem more formally and to analyze the computational complexity, we reformulate
the problem by representing a genetic network as a matrix. For a positive integer n, we denote by N(n)

the set of integers {1,2,...,n}. We denote by M (m,n;U) the set of all m x n matrices over a domain
U. For a matrix A € M(m,n;U), a;j denotes the element at column ¢ and row j for each i € N'(m) and
jeN(n).

We denote a genetic network G = (V,E,W,T) with V = {v1,vs,...,v,} by a pair of matrices
W e M(n,n;R) and T e M(1,n;R). Each value w;; in the matrix W corresponds to the weight
W ((vi,v;)), and w;; = 0 if (v;,v;) ¢ E. Since G does not contain self-loop, each diagonal element w;;
is always zero. The matrix T directly corresponds to the threshold mapping 7. In the sequel, we will
confuse the weight mapping W with its matrix representation W, and the threshold mapping 1" with T.

A global state for G can be represented as a vector @ = (a1,...,a,) € M(1,n;{—1,1}), where q;
denotes the state of gene v;. a; = 1 if the gene v; is active, and a; = —1 if inactive. Then the vector
§ = (s1,...,5n) whose j-th element s; represents the weighted sum 3, , yepa(v') - W((v',v;)) of the

gene v; can be computed by the matrix multiplication:

§ = (81,85, 8n) = (Ooig QWi L,y D of] QWi -y 2 og QWi p)
Wil ... Wig
=(ai,...,an) - : : —-q-W
Wn1 -vr Wnp

)

Thus the gene regulation rule assigned to a gene v; is expressed by the following: if s; > ¢; then v; should
be active, and if s; < ¢; then v; should be inactive.
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We express an experiment (z1,...,Zp, 71, .., yy) by a vector be M(1,n,{-1,0,1}), where

1 if Zj,
bj = —1 if Y,
0 otherwise.

That is, b; = 1 if the gene v; is overexpressed, and b; = —1 if v; is disrupted. Otherwise, b; = 0. In this
way, we can express a pair of experiment and its result by two vectors b and @ A series of [ experiments
and their results by a pair of matrices B € M(l,n;{—1,0,1}) and A € M(l,n;{—1,1}) in an obvious
way. We are now ready to formulate the problem to find a genetic network which is consistent with given
observed global states as follows.

Definition 3.1. Finding stable genetic network problem
e Given A e M(l,n;{—1,1}) and B € M(l,n;{—1,0,1})
e Find W € M(n,n;R) and T € M(1,n;R) such that

(1) for each j € N(n), wj; =0, and

(2) for each ¢ € N(I) and j € N(n), if b;j = 0 then
Sij >tj<:>aij =1 and Sij <tj<:>a¢j = —1, where S=A-W.

We note that the condition (1) is indispensable, since without it, a trivial solution exists; for example,
W is the unit matrix and T is the zero vector.

Now we deal with the computational complexity of the problem. By reducing the problem into the
linear programming problem, we can solve the problem in polynomial time.

Theorem 3.2. The finding stable genetic network problem can be solved in polynomial time.

By Theorem 3.2, the problem turned out to be tractable. Probably we can solve the problem of
reasonably large size by applying some linear programming packages [3, 9]. However, in general, the
above problem is too restricted in the sense that we only consider stable networks. As we stated in
Fig. 2, some networks have no stable states, if they contain cycles. Moreover, in practice, due to the
experimental noise, there is no guarantee to the existence of stable network. Therefore we have to deal
with a more realistic problem, that is a natural extension of the problem.

By relaxing the second condition of the problem, we treat it as a maximizing problem.

Definition 3.3. Maximum satisfying genetic network problem (MaxSGN).
e Given: Ae M(l,n;{—1,1}) and B € M(l,n;{-1,0,1}).

e Find: W € M(n,n;R) and T € M(1,n;R) with w;; = 0 for each j € N(n), which maximizes the
cardinality of the set

if bij = 0 then
(l,])GN(l)XN(n) sij>tj<:>aij:1and s
Sij < tj < Qi = —1

where S = A-W.

At a first glance, the problem seems to be a quite complicated optimization problem. However, as we
will show, the problem is very closely related to the following simple problem.
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Algorithm MaxSGNtoMaxFLS
Given A € M(l,n;{-1,1}) and B € M(l,n;{—1,0,1})
begin
foreach k. =1,...,n do
Sk =¢
foreachi=1,...,l do
if b;;, = 0 then
if a;; = 1 then
Sg =S U {“Z?Zl Wi > tr” }
else JFagp=-1%/
Sg := S U {“Z?Zl Wi < tr” }
return Sq,...,5,
end

Figure 3: Converter from a instance of MaxSGN to n instances of MaxFLS~

Definition 3.4 ([2]). Maximum feasible subset of linear inequalities problem (MaxFLS~”).

e Given: a set S of linear inequalities.
e Find: a solution which satisfies as many linear inequalities in S as possible.

The complexity of MaxFLS” is known as follows.

Theorem 3.5 ([2]). The maximum feasible subset of linear inequalities problem is NP-hard, even if
each coefficient is either —1 or 1. Moreover, there exists a polynomial-time approximation algorithm for
the problem with approximation ratio 2.

We can show the following theorem.

Theorem 3.6. The maximum satisfying genetic network problem is NP-hard. Moreover, there exists a
polynomial-time approximation algorithm for the problem with approximation ratio 2.

Proof For NP-hardness, we can show that a log-space reduction from MaxFLS” with coefficients {—1,1}
to MaxSGN.

Here, we briefly explain our polynomial-time approximation algorithm for MaxSGN whose approx-
imation ratio is guaranteed to be 2. First we convert a given instance A € M(l,n;{—1,1}) and
B e M(l,n;{-1,0,1}) of MaxSGN into n instances Si,...,S, of MaxFLS~ by the procedure in Fig. 3.
Thus each S consists of at most [ linear inequalities over variables {w1, ..., w,k, tx }. We assign wgr =0
for each k. Then we apply AK-algorithm in Fig. 4, proposed by Amaldi and Kann [2], in order to solve
MaxFLS~ for each Sy. Let opt(Sk) be the cardinality of maximum feasible subset of S, and let AK (S)
be the number of inequalities in Sj which are satisfied by the output values {wy, ..., wnk, tx} of AK-
algorithm. Since AK(Sk) > opt(Sk)/2, we have Y ;| AK(Sk) > > %_; opt(Sk)/2, which guarantees the
approximation ratio of our algorithm. Since AK-algorithm runs in polynomial time with respect to the
length of Si, our algorithm also runs in polynomial time. O

The above theorem implies that if we try to find a genetic network which is optimally consistent
with observed data, it is intractable. On the other hand, if we relax the condition of optimality, then
the problem becomes tractable. Therefore it is important to develop practical algorithms using some
heuristics methods in order to find a good genetic network. In the next section, we will propose a
practical algorithm, inspired by the HAKKE system [5, 8]. We also note that our problem is very closely
related to a classical problem of learning by a perceptron, where some learning algorithms are proposed
[4, 6, 7].
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Algorithm AK-algorithm
Given S: set of linear inequalities over variables X
begin
while S # ¢ do
if there are inequalities in S that contains a single variable then
U :={x € X | z occurs as a single variable in at least one inequalities of S} ;
pick at random y € U ;
F(y) := {e € S| e contains only the variable y} :
assign a value to y that satisfies as many inequalities in F'(y) as possible ;
§:=5—-F(y);
else
pick at random y € X ;
assign a random value to y ;
reevaluate the inequalities in S that contain y;
X=X—-{y};
return the assignments
end.

Figure 4: AK algorithm for MaxFLS~.

4 Weights Adjusting Algorithm

We propose an algorithm in Fig. 5 which outputs a genetic network as a pair of weighted matrix W and
threshold vector T, from given observed data represented by matrices A and B. In this algorithm, the
matrix W is represented by the sum W+ +W ™~ of two matrices W € M(l,n; Zt) and W~ € M(l,n; Z7),
where Z1 (Z7) denotes the set of non-negative (non-positive, resp.) integers. Similarly, the threshold
vector T is also represented by two vectors T and T~ . Initially, all elements in W+, W—, T", and T~
are set to 1, except that w{'{ = w;; = 0. If the weights and thresholds are not fit to given observed data,
they will be adjusted by multiplying by two the corresponding elements in the matrices. The adjusting
process is repeated until it converses or the loop counter becomes greater then pre-defined threshold.

5 Experimental Results

This section reports our simulation results on performing WA algorithm and AK algorithm. We estimated
the learning ability of algorithms as follows. We randomly generate gene networks of size at most 1000
as target networks. The outdegree of networks varies from 1 to 8, although the indegree is not bounded.
Target network may contain cycles. For each network, first we generated a global state Normal. Then we
generated a set Flipl of global states by experiments of either a single overexpression or a single disruption
for each gene. Thus the size of Flip! is equal to the number of genes. We input both Normal and Flip1
to our algorithms as training examples. In order to verify the effect of learning, we randomly generated
a set Flip2 of 100 global states by experiments, where two genes are either overexpressed or disrupted.
We counted the number of states in Flip2 which are correctly predicted by using W and 1" output by
the algorithms. We repeated this process for four times, and evaluated the average. The running time of
AK algorithm was approximately one hour, while that of WA algorithm was approximately three hours
for each trial, when the number of nodes was set to 1000.

First we investigated the relation between the outdegree and the accuracy. The outdegree of the
target network was changed from 1 to 8, while the number of nodes was fixed to 1,000. The result is
shown Table 1 and Fig. 6. As the outdegree increases, the accuracy goes down for both algorithms, which
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Algorithm Weights Adjusting
Given A € M(I,n;{-1,1}), Be M(l,n;{—1,0,1})
begin
initialize W, W=, T, T—;
for each i € N(I) in random order begin
a0 := 1 ; loop-counter := 0 ;
repeat
for j =1tondo
if bij =0 then
sum =0 ;
for £ = 0 to n do sum := sum + aik(w:j — W) ;
if a;; = 1 and sum < 0 then
for Kk =0 ton do
if aikw:j > 0 then w,jj = 2w,jj
else Wy = 2w,;j ;
else if a;; = —1 and sum > 0 then
for Kk =0 ton do
if aikw:j < 0 then w,jj = 2w,jj
else Wy = 2w,;j ;
loop-counter := loop-counter + 1;
until W+, W—,T%, T~ are stable or loop-counter > limit-of-loop;
end;
end.

Figure 5: Weights Adjusting Algorithm
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Table 1: Outdegree vs Accuracy

‘ outdegree ‘ 1 ‘ 2 ‘ 4 ‘ 6 ‘ 8 ‘
WA 99.99% | 93.48% | 70.88% | 63.14% | 58.80%
AK 97.24% | 86.47% | 70.42% | 69.51% | 69.87%

100

> 90
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70

60

50

out degr

Figure 6: Outdegree vs Accuracy, where the number of nodes is 1000.

were naturally expected. WA is superior to AK when the outdegree is less than 4, and inferior otherwise.

Next, we examined the relation between the number of nodes and the accuracy. We changed the
number of nodes from 10 to 1,000, while the outdegree was fixed either 2 or 4. The results are shown
in Table 2, and illustrated in Fig. 7 and Fig. 8. In case that the outdegree is 2, the accuracies of both
algorithms do not go down even when the number of nodes increases. However, in case that the outdegree
is 4, the accuracy of WA goes down as the number of nodes increases.

6 Concluding Remarks

In this paper, we formulated a genetic network as a weighted graph, and we investigated the computational
complexity of the problem. We have implemented two algorithms to find networks from given observed
data. In our experiment, we dealt with only 1 (active) and -1 (inactivate) as observed data. However,
our model can be easily generalized to treat degrees of activation if needed.

Table 2: Number of nodes vs Accuracy, where d denotes the outdegree.

| number of nodes | 10 [ 32 | 100 | 316 | 1,000 |
d=2] WA [79.1% ] 91.5% | 95.4% [ 95.7% | 93.5%
AK  160.1% [ 64.2% | 78.7% [ 84.0% [ 86.5%
d=4] WA [634% | 82.9% | 85.4% [ 80.4% | 70.9%
AK  [57.2% [ 58.7% | 63.7% | 72.2% [ 70.4%
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Figure 7: Number of nodes vs Accuracy, where the outdegree is 2.
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Figure 8: Number of nodes vs Accuracy, where the outdegree is 4.
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